人工湿地完工后必须持续管理与维护, 湿地的功能才能持续发挥, 本研究的人工湿地于2007 年6 月完工后, 进行试验操作的时间约为1. 5 年, 待研究所需的数据收集完整后, 人工湿地的运行与维护即交由慈济生活进行管理, 至目前已正常运行3 年。后续的运行管理维护状况, 以及湿地是否仍维持当初试验时的功能, 是值得关注的课题。因此本文作者于2009 年7 月6~ 20 日前往该湿地场址采集水样进行分析, 并记录处理流量, 以了解其后续的运行维护状况与功能评估。
TN: 2009 年7 月7 日、21 日生活污水处理站曝气量减半, 出水BOD5 依然很低, 原先在启动期、稳定操作期Ⅰ、稳定操作期Ⅱ湿地出水NH3-N 浓度较小, NH3-N 在2009 年7 月7 日为30. 94 mg/ L、 21 日为57. 44 mg/ L, 浓度增加; NO- 3-N 在7 月7 日为0. 43 mg/ L、21 日为0. 12 mg/ L, 浓度减少; 氮的种类由原来的NO- 3-N ( 由约37 mg/ L 降低为 0. 4 mg / L) 变成NH3-N( 由原来的0. 45 mg/ L 增加为30~ 57 mg / L) , 显示目前湿地存在硝化和反硝化作用, 与文献研究结果[ 5, 6] 。
TP: 2009 年7 月7 日测得数据T P 进水3. 6 mg/ L, 出水7. 8 mg/ L, 浓度不减反增, 是因为没有进行植物采收, 植物在水中腐烂而释出磷。次日进行植物采收后, 于21 日测得T P 进水8. 2 mg/ L、出水6. 1 mg / L, 浓度降低。
6 结语
( 1) 生活污水处理站二级处理出水中, T N 组成主要污染物为NO- 3-N ( 约占TN 的80%~ 90%) , 平均浓度约为31. 04 mg / L, 经FWS 湿地处理后, 浓度降低至23. 1 mg/ L, 再经SSF 湿地处理后, 浓度可降低至14. 68 mg/ L, FWS 的N O- 3-N 去除率约为26%, SSF湿地约为36% , 整个湿地的N O- 3-N 去除率为53% 。显示SSF 湿地对于NO- 3-N 的去除效能比FWS 湿地好。
( 2) 研究过程中发现, 生活污水处理站出水有机物平均浓度很低( BOD5 < 10 mg/ L) , 这种状况不利于有机碳源的硝化反应, 使本研究的脱硝化速率常数较低, 解决方法如下:①适当减少污水处理站的曝气量。因为台湾省环保署的放流水标准规定BOD5 30 mg/ L即可, 因此减少污水处理站的曝气量不但能够节省能源, 同时也可增加人工湿地系统中有助于硝化反应的有机碳源, 但曝气量减少过多会造成硝化作用的不。②等待人工湿地系统运行稳定。长期运行后的人工湿地系统中, 会累积一些植物体残渣, 这些植物体在水体中会逐步释放出有机物, 增进硝化作用。不过这种方法仅对FWS 湿地有效, 同时也较难控制。③将部分生活污水处理站的进水引入人工湿地系统。因为污水中含有较高的BOD5 , 可为硝化所利用, 人工湿地本身同时也具有硝化作用去除氨氮, 可起到减少生活污水处理站负荷及降低TN 的作用。
( 3) 虽然SSF 湿地硝化效能较佳, 且所需的土地面积较少, 但是相对于FWS 湿地其造价要高出许多。
|